45
edits
(Change blockquote tag to opening syntaxhighlight tag.) |
m (cleaned up language.) |
||
Line 109: | Line 109: | ||
==== Scientific Notation ==== | ==== Scientific Notation ==== | ||
A more secure method of estimation is to begin by writing every number in scientific notation, that is, of the form X x | A more secure method of estimation is to begin by writing every number in scientific notation, that is, of the form X x 10<sup>n</sup> where X is greater than (or equal to) 1, but less than 10. Slide rules are particularly adept at this, since numbers such as 2, 200, and 0.0002 are all at the same position on the slide rule, it is easier to think of them as simply 2 with some multiplier power of ten. Most slide rule instruction books write the positions on the actual scales in this form, with 346 on the rule being described as 3.46. | ||
After all numbers are in the correct form, estimation can take place on the now one-digit numbers (called the mantissa), and simple addition and subtraction of the powers of ten (called the characteristic) can properly place the decimal. | After all numbers are in the correct form, estimation can take place on the now one-digit numbers (called the mantissa), and simple addition and subtraction of the powers of ten (called the characteristic) can properly place the decimal. | ||
Line 122: | Line 122: | ||
A peculiar feature of slide rules is the fact that the scales "wrap around" themselves quite often. This leads to a very nice tool in tracking any extra complications with the decimal point: the slide itself. When performing the standard multiplication procedure (starting at an index), any time the upper index is used, this represents using this "wrapping" feature, which in essence describes adding 1 to the characteristic at the end. With division, the operation is reversed, meaning that any time you reach the upper index, you have to subtract one from the characteristic. The actual rule takes more reasoning, but can be described as follows: if multiplying brings you ''down'' the rule, add one to the characteristic (using either method of multiplying). Likewise, if dividing (using either method) brings you ''up'' the rule, subtract one from the characteristic. This can be seen by using our previous example on scientific notation: | A peculiar feature of slide rules is the fact that the scales "wrap around" themselves quite often. This leads to a very nice tool in tracking any extra complications with the decimal point: the slide itself. When performing the standard multiplication procedure (starting at an index), any time the upper index is used, this represents using this "wrapping" feature, which in essence describes adding 1 to the characteristic at the end. With division, the operation is reversed, meaning that any time you reach the upper index, you have to subtract one from the characteristic. The actual rule takes more reasoning, but can be described as follows: if multiplying brings you ''down'' the rule, add one to the characteristic (using either method of multiplying). Likewise, if dividing (using either method) brings you ''up'' the rule, subtract one from the characteristic. This can be seen by using our previous example on scientific notation: | ||
<syntaxhighlight> | <syntaxhighlight> | ||
431 x 0.00085 = (4.31x10²)x(8.5x10⁻⁴) | 431 x 0.00085 = (4.31x10²)x(8.5x10⁻⁴) ⇒ 2 - 4 = -2 | ||
4.31(D) | I → 8.5(C) ≈ 3.67(D) | 4.31(D) | I → 8.5(C) ≈ 3.67(D); (4 > 3) ⇒ Characteristic + 1 (=-1) | ||
Therefore 3.67x10⁻¹=0.367 | |||
</syntaxhighlight> | </syntaxhighlight> | ||
edits